# Mathematical Visualization Lectures Nov. 12th - Nov. 15th

### Nov. 12th

Recall from last week: E(2) with O(2) the orthogonal group and  $\mathbb{R}(2)$  the translation group  $\phi: E(2) \to O(2)$  with  $\begin{pmatrix} R & T \\ 0 & 1 \end{pmatrix} \to \begin{pmatrix} R & 0 \\ 0 & 1 \end{pmatrix}$  is a group homomorphism It is:  $\ker(\phi) = \mathbb{R}(2)$ , i.e.  $\mathbb{R}(2) \leq E(2)$ .

$$R_{0,\theta} \underbrace{v}_{0} \begin{array}{c} P \end{array} \stackrel{R_{P,\theta}}{\underset{0}{\overset{}}} R_{P,\theta} = T_{v} \circ R_{0,\theta} \circ T_{v}^{-1}$$

Remember that  $h \mapsto ghg^{-1}$  is the conjugation by g. If you put in a translation it stays a translation. This is another way to see that the translation group is a normal subgroup.

Discrete subgroup: the identity element is isolated, i.e. it has a neighborhood with no other group element.



dim ker  $\phi$  gives a classification of discrete subgroups Let  $\Gamma \leq E(2)$  be a discrete subgroup. Then  $\phi(\Gamma) \subset O(2)$  and define  $T := \ker \phi(\Gamma) \subset \mathbb{R}(2)$ dim T = 0, 1, 2

0: point  $(C_n \text{ or } D_n \text{ where } C_n \text{ is generated by a } \frac{2\pi}{n}$  rotation and  $D_n$  by two intersection reflections of angle  $\frac{\pi}{n}$ 



- 1: frieze groups (there are seven of them)
- 2: wallpaper groups (or in general: crystallographic groups) there are 17 of them

### Decision tree for patterns to recognize frieze groups



Question: Is there a cleaner set of questions? (there is, as we'll see tomorrow) Wallpaper groups: order: 2, 3, 4, 6,  $C_n$  or  $D_n$ orientation preserving? YES  $C_n$ , id, NO  $D_n$ Three groups with  $D_n$  (instance reflection); and it is

Three groups with  $D_1$  (just one reflection): xx, \*\*, \*x

| $C_1$ | 0    | $D_1$ | **, xx, *x              |
|-------|------|-------|-------------------------|
| $C_2$ | 2222 | $D_2$ | *2222, 2 * 22, 22*, 22x |
| $C_3$ | 333  | $D_3$ | *3333, 3 * 3            |
| $C_4$ | 244  | $D_4$ | 4 * 2, *244             |
| $C_6$ | 236  | $D_6$ | *236                    |

### Nov. 13th (Problem class)



every element of G can be written as: T or Tr

Then Charles explained what this means for Assignment 3.

Nov. 15th

## Classification of compact surfaces



In higher dimensions, people distinguish topological, smooth and PL manifolds.

A theorem from the 1930's says there is no distinction in 2 or 3 dimensions.

For us, it means we can assume any compact surface is triangulated, i.e. it arises from glueing (finitely many) triangles together. Zip-proof:



Features in surfaces:

*puncture*: remove an open disk *handle*: remove two open disks, sew in a cylinder



cross-handle: remove two disks, sew in cylinder this way



cross-cap: remove a disk, sew in Möbius band



sphere with a puncture: disk sphere with two punctures: cylinder sphere with a handle: torus sphere with cross-handle: Klein-Bottle ( $K^2$ ) sphere with a cross-cap:  $\mathbb{R}P^2$  (projective plane) sphere with two cross-caps:  $K^2$ 

sphere with a cross-cap.  $\mathbb{R}^{r}$  (projective plane) sphere with two cross-caps.

locally: adding two crosscaps = adding cross-handle

Temporary Definition:

An *ordinary* surface is a finite union of components, each being asphere with some number of punctures, handles, cross-handles, cross-caps added.

First goal: Every surface is ordinary. Follows immediately from:

Lemma:

If we start with an ordinary surface and zip up one zipper, the result is ordinary.

Proof:



Suppose first the two sides of the zipper are full boundary circles.



If the two sides of the zipper start on the same component, the zipping replaces two punctures by a handle or cross-handle.

If the zippers do not go all the way around, the result is the same, except with a puncture left. This is also the case if one is a full loop and the other only a half.



What if the two sides of the zipper are the same boundary components?



3



On a non-orientable component (i.e. one with at least one cross-cap or cross-handle) there is no difference between adding a handle or a cross-handle.



#### Final classification

Each connected compact surface is either a sphere with  $g \ge 0$  handles and  $k \ge 0$  punctures  $\Sigma_{g,k}$  (if orientable) or if non-orientable is a sphere with  $h \ge 1$  cross-caps and  $k \ge 0$  punctures  $N_{h,k}$ .  $\Sigma_{0,2}$ = cylinder,  $N_{1,0} = \mathbb{R}P^2$ ,  $N_{1,1}$ = Möbius band,  $N_{2,0} = K^2$ .

Euler characteristic



$$\begin{split} \chi(S^2) &= 2\\ \chi(\Sigma_{g,k}) &= 2 - 2g - k\\ \chi(N_{h,k}) &= 2 - h - k \end{split}$$

The type of a connected compact surface can be determined from:

k = # boundary components,  $\chi$ , orientable?

If  $\chi + k$  is odd, then the surface is non-orientable.