Author Archives: Felix
Combinatorial Geometry: Cell Complexes
Roughly speaking, Combinatorial complexes play a similar role in the discrete world as differentiable manifolds in the smooth world. They are able to capture the “intrinsic” properties of a geometric object, i.e. those properties that are independent of any embedding … Continue reading
Posted in Lecture
Leave a comment
Combinatorial Geometry: Simplicial Complexes
While (for good reasons) we have restricted our treatment of combinatorial cell complexes to the two-dimensional case, the theory of $n$-dimensional simplicial complexes is rather straightforward: Definition: A simplicial complex is a finite set $P$ together with a set $\mathcal{S}$ … Continue reading
Posted in Lecture
Leave a comment