Conformal maps III: Stereographic Projection

Stereographic projection

\[\sigma: \mathbb{R}^n \to S^n \setminus \{\mathbf{n}\}\]

where

\[\mathbf{n}=(0,\ldots,0,1)\in\mathbb{R}^{n+1}\]

is the northpole of $S^n$ is a special case of an inversion: Let us consider the hypersphere $S\subset\mathbb{R}^{n+1}$ with center $\mathbf{n}$ and radius $r=\sqrt{2}$ and look at the image of

\[\mathbb{R}^n =\left\{\mathbf{x}\in\mathbb{R}^{n+1}\,{\large |}\, x_{n+1}=0\right\}\]

under the inversion $g$ in $S$. The points in the image $g(\mathbb{R}^n)$ satisfy

\begin{align*}0&=\left\langle \mathbf{n},\mathbf{n}+2\,\frac{\!\!\!\mathbf{x}-\mathbf{n}}{|\mathbf{x}-\mathbf{n}|^2}\right\rangle\\\\&=\frac{|\mathbf{x}|^2-1}{|\mathbf{x}|^2+1}\end{align*}

And therefore lie on the unit sphere $S^n$. With the notation $\sigma:=\left.g\right|_{\mathbb{R}^n}$ we obtain

\[\sigma(\mathbf{x})=\frac{2\mathbf{x}+(|\mathbf{x}|^2-1)\mathbf{n}}{|\mathbf{x}|^2+1}.\]

Let us compute also $\sigma^{-1}=\left.g\right|_{S^n \setminus \{\mathbf{n}\}}$. For $\mathbf{x} \in S^n \setminus \{\mathbf{n}\}$ we have

\[\sigma^{-1}(\mathbf{x})=\frac{\mathbf{x}-\langle \mathbf{n},\mathbf{x}\rangle \mathbf{n}}{1-\langle \mathbf{n},\mathbf{x}\rangle}.\]

Note that we have

\[\sigma(\mathbf{x})=\lambda \mathbf{x}+\mu \mathbf{n}\]

with $\lambda+\mu=1$. This means that $\mathbf{n}$, $\mathbf{x}$ and $\sigma(\mathbf{x})$ always lie on a straight line. This accounts for the fact that $\sigma$ is called a projection with the north pole as its center. There is a beautiful video by Henry Segerman that illustrates stereographic projection by placing an LED at the north pole of a 3D-printed sphere and watching the shadow on a horizontal plane.

stereographic

Here the plane on which $\sigma$ is defined touches the sphere, whereas in  our case it cuts the sphere in the equator. This is of course irrelevant. Here is another video with more patterns.

This entry was posted in Lecture. Bookmark the permalink.