-
Recent Posts
- Wave- and heat-equation on surfaces
- Partial differential equations involving time
- Tutorial 11 – Electric fields on surfaces
- Laplace operator 2
- Triangulated surfaces with metric and the Plateau problem
- Dirichlet energy 2
- Gradient and Dirichlet energy on triangulated domains.
- Triangulated surfaces and domains
- Laplace operator 1
- Tutorial 10 – Discrete minimal surfaces
- Tutorial 9 – The Dirichlet problem
- Tutorial 8 – Flows on functions
- Tutorial 7 – Visualization of gradient fields
- Random Fourier polynomials
- Tutorial 6: Close-to-conformal parametrizations of Hopf tori
- Tutorial 5: Lawson’s minimal surfaces and the Sudanese Möbius band
- The 3-Sphere
- Tutorial 4: Hyperbolic helicoids
- Tutorial 3: Framed Closed Curves
- Conformal maps III: Stereographic Projection
- Conformal Maps II: Inversions
- Quaternions
- Tutorial 2: Framed Discrete Curves
- Mandelbrot Set
- Conformal Maps I: Holomorphic Functions
- Conformal Parametrizations of Surfaces
- Parallel Frame for Curves
- Arclength-Parametrized Curves
- Sampled Parametrized Curves
- Tutorial 1: Implicit Surfaces with Houdini
- Creating Geometry From Scratch
- Combinatorial Geometry in Houdini
- Combinatorial Geometry: Simplicial Complexes
- Combinatorial Geometry: Cell Complexes
- Scenes with White Background
- Simple Ambient Scenes
- Visualizing Discrete Geometry with Houdini II
- Rendering and Working with Cameras
- Visualizing Discrete Geometry with Houdini I
- Using Houdini on MacBooks
Recent Comments
Archives
Categories
Meta
Monthly Archives: May 2016
Tutorial 5: Lawson’s minimal surfaces and the Sudanese Möbius band
In the last tutorial we constructed certain minimal surfaces in hyperbolic space. These hyperbolic helicoids were generated by a 1-parameter family of geodesics: while moving on a geodesic – the axis of the helicoid – another geodesic perpendicular to the axis was … Continue reading
Posted in Tutorial
Comments Off on Tutorial 5: Lawson’s minimal surfaces and the Sudanese Möbius band
The 3-Sphere
So far we have seen geometries in 2D and 3D, which are the dimensions we are familiar with. But mathematician have found interesting geometries in higher dimensions and it would be great if we could visualize them. In particular a huge … Continue reading
Posted in Lecture
Comments Off on The 3-Sphere
Tutorial 4: Hyperbolic helicoids
A ruled surface is a surface in \(\mathbb R^3\) that arises from a 1-parameter family of straight lines, i.e. these surfaces are obtained by moving a straight line though the Euclidean space. E.g. a normal vector field of a curve defines such … Continue reading
Posted in Tutorial
Comments Off on Tutorial 4: Hyperbolic helicoids
Tutorial 3: Framed Closed Curves
A closed discrete curve \(\gamma\) is map from a discrete circle \(\mathfrak S_n^1 =\{z\in\mathbb C \mid z^n = 1\}\), \(n\in \mathbb N\), into some space \(\mathrm M\). In some situations it is more convenient to consider the discrete circle just as \(\mathbb Z/n\mathbb Z\),\[\mathbb … Continue reading
Posted in Tutorial
Comments Off on Tutorial 3: Framed Closed Curves
Conformal maps III: Stereographic Projection
Stereographic projection \[\sigma: \mathbb{R}^n \to S^n \setminus \{\mathbf{n}\}\] where \[\mathbf{n}=(0,\ldots,0,1)\in\mathbb{R}^{n+1}\] is the northpole of $S^n$ is a special case of an inversion: Let us consider the hypersphere $S\subset\mathbb{R}^{n+1}$ with center $\mathbf{n}$ and radius $r=\sqrt{2}$ and look at the image of \[\mathbb{R}^n =\left\{\mathbf{x}\in\mathbb{R}^{n+1}\,{\large … Continue reading
Posted in Lecture
Comments Off on Conformal maps III: Stereographic Projection
Conformal Maps II: Inversions
Let $M\subset \mathbb{R}^n$ be a domain. A smooth map $f:M \to \mathbb{R}^n$ is called conformal if there is a smooth function $\phi:M\to \mathbb{R}$ and a smooth map $A$ from $M$ into the group $O(n)$ of orthogonal $n\times n$-matrices such that … Continue reading
Posted in Lecture
Comments Off on Conformal Maps II: Inversions
Quaternions
Quaternions, $\mathbb{H}$ are a number system like real or complex numbers but with 4 dimensions. In particular, $\mathbb{H}$ is nothing but $\mathbb{R}^4$ together with a multiplication law. The identification of $\mathbb{H}$ and $\mathbb{R}^4$ is given by: $$ \mathbb{H} = \lbrace … Continue reading
Posted in Lecture
Comments Off on Quaternions
Tutorial 2: Framed Discrete Curves
A discrete curve \(\gamma\) in a space \(\mathrm M\) is just a finite sequence of points in \(\mathrm M\), \(\gamma = (\gamma_0,…,\gamma_{n-1})\). In case we have discrete curve \(\gamma\) in \(\mathbb R^3\) we can simply draw \(\gamma\) by joining the points by straight … Continue reading
Posted in Tutorial
Comments Off on Tutorial 2: Framed Discrete Curves
Mandelbrot Set
If you google “mathematics visualization”, the resulting wikipedia page shows the Mandelbrot set as a famous example. The Mandelbrot set \(M\subset{\Bbb C}\) is defined as the following. For each \(c\in {\Bbb C}\), consider the iteration \(z_{n+1}(c) = ({z_n}(c))^2+c\), \(n=0,1,2,\ldots\) and \(z_0(c) = … Continue reading
Posted in Tutorial
Comments Off on Mandelbrot Set
Conformal Maps I: Holomorphic Functions
If $M\subset\mathbb{R}^2$ is a plane domain and the image of parametrized surface $f:M\to \mathbb{R}^3$ is contained in \[\mathbb{R}^2=\{(x,y,z)\in \mathbb{R}^3\,\,|\,\, z=0\}\] then the defining equations of a conformal map \begin{align*}\left|f_u\right|&=\left|f_v\right| \\\\ \langle f_u,f_v\rangle &=0\end{align*} imply that $\left|f_v\right|$ arises from $\left|f_v\right|$ by … Continue reading
Posted in Lecture
Comments Off on Conformal Maps I: Holomorphic Functions